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Abstract—The large scale restrictions to heat flow from two sliding solids can have a significant effect on
the temperature field near the interface. It is shown that a practical system can be approximated to two
semi-infinite solids whose temperatures at infinity are related to the heat flow rates through them. A
number of existing semi-infinite solid solutions are generalised to allow for a difference between the tem-
peratures at infinity and a new particular solution is developed for the case of sub-surface heat generation.
The method is then extended to situations with several contact areas and the effect of geometrical and
physical properties on the interfacial bourdary conditions is discussed.

NOMENCLATURE
radius of an actual contact area;
radius of the nominal contact area;
specific heat ;
heat flow into solids 1, 2;
total rate of heat generation ;
heat input to the ith contact area;
total number of actual contact areas ;
distance from the heat source;
temperatures of the boundaries (or
at infinity) of the solids 1, 2;
time; -
relative velocity ;
projection of the distance r onto the
direction of relative motion;
perpendicular distance from the sur-
face;
depth of a sub-surface heat source;
thermal diffusivity ;
fractional reduction in constriction
resistance due to the finite size of the
nominal contact area;
density ;
temperature produced at the contact
area by a unit heat input tosolids 1,2;
temperature produced at the contact
area by a unit sub-surface heat
input to solid 1.

1. INTRODUCTION

IT 18 now generally accepted that one of the
most important parameters in all sliding contact
systems is the temperature field in the vicinity
of the sliding surfaces. This can influence the
process in a variety of ways, notably by con-
trolling the oxidation rate at the interface, the
adsorption of gases and lubricants, the mechani-
cal properties of the surface layers and the
viscosity of the lubricant.

A number of solutions to the relevant heat
conduction problem have been published, but
these have been largely concerned with the
ideal case of two semi-infinite solids, with zero
temperatures at infinity, making contact at a
single area in the interfacial plane. These solu-
tions have frequently been used out of context
and the present paper demonstrates some of
the changes produced in the temperature field
by the practical limitations of finite systems
and large scale thermal restrictions.

The boundary conditions in a practical sliding
system do not generally admit an exact analytical
solution and a choice has to be made between a
numerical solution (e.g. by a relaxation or finite
difference equation method) and the use of a
physical and/or analytical approximation. The
latter method is used here, not because it is
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necessarily the best method to use in all cir-
cumstances, but because it enables the effect of
the boundary conditions on the solution to be
presented with greater generality. However,
it is worth remarking that the greatest limitation
on accuracy is that imposed by the absence of
reliable information about the boundary con-
ditions at the interface. There is therefore little
justification for obtaining a high numerical
accuracy for a particular solution. However,
accurate solutions are necessary for assessing
the reliability of the approximate methods.

It is shown how an approximate solution to a
practical problem can be derived from a know-
ledge of the restrictions to heat flow from the
remote surfaces of the solids and the effect of
changes in the temperatures at infinity in the
semi-infinite solids solution appropriate to
the microscopic boundary conditions at the
interface. In Section 4, a number of particular
solutions to the latter problem are derived from
existing ‘equal-temperatures-at-infinity’ solu-
tions and a new solution is obtained for the
particular case where heat is generated below
the surface of one of the solids. The discussion
is then extended to situations with several
contact areas whose temperature fields interact
(Section 5).

The division of frictional heat between the
solids proves to be very sensitive to the motion
of the contact area relative to the surfaces. In
practice, this relative motion is determined by
the nature of the individual interactions between
the asperities of the surfaces. The solutions of
the heat conduction problem are therefore
interpreted in their physical context in the
Discussion.

2. BOUNDARY CONDITIONS OF THE PROBLEM

The essential features of sliding systems which
influence the heat flow are the nature of the
contact between the solids, the distribution of
heat sources and the large scale cooling effects
at the non-contacting surfaces.

2.1 The area of contact
The area of each surface within which contact
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is possible will be defined by the geometry of
the sliding system; this is known as the nominal
contact area. However, the solids will not
necessarily be in actual contact continuously
over the entire nominal area. Bowden and
Tabor and others have shown that the roughness
of surfaces restricts their actual contact to a
number of small areas at the peaks of the
surface asperities. As the load is increased,
these asperities deform, allowing the solids
to move closer together and causing more
contact areas to be formed. A recent account of
the theory of the contact of stationary solids has
been published by Greenwood [1]. There is a
considerable amount of evidence to suggest
that the contact of sliding solids is also restricted
to a number of small arecas. However, in this
case the distortion produced by the relative
motion of the solids will cause the actual contact
areas cither to be transient due to the fracture
of the junctions, or to move relative to one or
both solids.

2.2 The location of the heat sources

The heat generated during sliding is associated
with the plastic deformation caused by mechani-
cal interaction between the solids at or near the
actual contact areas. The distribution of the
heat source therefore depends on the nature of
these interactions. Some indication of the
location of plastic deformation is given by the
studies of large scale model junctions by
Green [2], Greenwood and Tabor [3] and
Brockley and Fleming [4] Their work supports
the general proposition that most of the heat
is generated within the sphere of which the actual
contact area forms a diametral plane.

2.3 Large scale cooling effects

It is sometimes argued that, if the distance
between the cooled boundaries of the solids
and the interface is large in comparison with
the dimensions of the actual contact regions
(as is generally the case), it is possible to approxi-
mate the system to two semi-infinite solids. It
is true that the temperatures at such remote
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regions of the semi-infinite solids are scarcely
affected by the conditions at the interface.
However, the material beyond these imaginary
boundaries performs the function of an infinite
heat sink of negligible thermal resistance. In a
finite system in a steady thermal state, this
infinite heat sink is replaced by a practical heat-
transfer process which causes the average tem-
perature of the boundaries to be related to the
heat fiow from them.

Thus

0, =F4(T) Y]
0, =F|T)) )

where @,, 0, are the rates of heat flow through
the solids 1, 2 respectively and T;, T, are the
temperatures of their exposed surfaces.

In the contact of two semi-infinite solids, the
temperature at infinity is unaffected by any
changes in the temperature at the contact area
(assumed finite), but the temperature at infinity
does affect the temperature field near the contact
area. Similarly, even if the boundaries of two
finite solids are sufficiently remote from the
interface to be unaffected by the contact con-
ditions there, the temperature field near the
contact area and the distribution of heat between
the solids will be affected by the temperature of
the boundaries. In fact, this practical system
can be approximated to two semi-infinite solids
with the same contact conditions, but of which
the temperatures at infinity are related to the
heat flow rates by equations (1) and (2).

3. METHOD OF SOLUTION
In general, the relationships given by equa-
tions (1) and (2) will be known or may be found
by independent experiments on the solids. Also,
the total rate of heat generation at the interface
(Qy) will be determined by the mechanical
conditions at the interface and

0,+Q,=0r 3

In order to producea sofution, we also need to
find the effect of the unknown ‘temperatures at
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infinity’ (T;, T;) and the known interfacial
contact and heat generation conditions on the
distribution of Qr between two semi-infinite
solids. This will provide a fourth equation rela-
ting the four unknowns (Q;, @, Ty, T5). This
relationship can be obtained by superposing
two subsidiary solutions:

(1) with the same boundary conditions except
that the temperatures at infinity are both zero,

(2) with non-zero temperatures at infinity
(T;, T,), but with no heat generation at the
interface.

This approach allows us to make use of existing
solutions to problem (1). The effect of various
contact conditions on these semi-infinite solid
solutions will be discussed in section 4.

4. THE SEMI-INFINITE SOLID SOLUTION
The temperature (T) in an infinite solid,
initially at zero temperature, due to an in-
stantaneous point source of heat at time t = 0
is subsequently given by

0 (7 )
T ~8pcy/ (nxt)eXp \ 4t @
where Q is the quantity of heat liberated, r is
the distance from the source and the solid has
density p, specific heat ¢ and thermal diffusivity
(Carslaw and Jaeger [5]).

Since the infinite solid is spherically sym-
metrical about the point source, there can be no
heat flow across a diametral plane and the
temperature reached in a semi-infinite solid with
an instantaneous point source on the surface
and no heat loss from the surface is

__ 9 r
T “dpc,/ (mct)exp (-— Zr&)

since all the heat is now directed into one half
space.

This solution may be extended by integration
to any distribution of heat input on the surface
of a semi-infinite solid and it is the basis of
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most of the work on heat conduction during
sliding,

Blok [6] and Jaeger [7] have both produced
approximate solutions to the problem of two
solids in relative motion with a continuous
heat source uniformly distributed over the area
of contact, the latter being stationary with
respect to one solid. Circular, square and band
heat sources were considered all of which gave
very similar results. The solids were both
assumed to be semi-infinite with zero tempera-
ture at infinity.

The problem was solved by finding the tem-
perature at the contact area due to a uniformly
distributed heat input to each solid, by inte-
gration of equation (5). The distribution of heat
between the surfaces was then adjusted to
equalise these temperatures. Thus, if a unit
heat input causes the temperature of the contact
area in solids 1 and 2 to be 8, and 6, respectively,
the actual heat flow into the solids will be

OZQT
1= 6
¢ 0, + 6, ©
OIQT
%=6,+ 0y 7

These equations satisfy equation (3) and cause
the temperature at the contact area in each solid
to be 6,0,07/(0, + 6,), the equality being
required for continuity of temperature through
the contact.

It is not strictly correct to specify a uniformly
distributed heat input to each solid since,
although the heat source is assumed to be
uniform, the distribution of heat between the
solids will vary over the contact area. As a
consequence of this approximation, it is not
possible to match the temperature over the entire
contact area: Blok equates the maximum
temperatures at the interface whilst Jaeger
equates the average temperature over the contact
area. The latter method takes some account of
the variation of temperature over the contact
area and is thus less likely to fail under unusual
conditions.
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A more exact solution to this problem has
recently been produced by Cameron et al. [8]
by matching the temperature at all points in
the contact area by a numerical method and
thus allowing for the variation of heat distri-
bution with position. They also solve for the
case where the contact area moves relative to
both solids. They conclude that the solutions of
Blok and Jaeger are remarkably accurate in
spite of the approximate method (Symm [9]).
In view of the additional complications intro-
duced by the more exact solution, it is reasonable
to use the approximate method unless a high
accuracy is required.

The solution to the parallel problem with non-
zero temperatures at infinity and no heat genera-
tion can be found from Jaeger’s results by a
similar temperature matching process in which
the heat flow in the hotter solid is reversed.
Thus it follows from the above definitions that a
temperature difference of (6, + 0,) between the
remote boundaries of the two solids will cause a
unit heat flow between them, within the limits
imposed by the Jaeger approximation.

Combining these results we can derive the
following equations for Q,, 0, when the tem-
peratures at infinity are T;, T,

0,07 +(T, = T))

“ e @
_60:+ (5~ T)
%=+ 0, ©

It should be noted that the quantities 0,0,
are temperature differences per unit heat flow
so dimensional consistency is preserved. They
depend on the shape of the contact area and its
velocity relative to the solid. Mathematical
expressions and numerical values can be found
in Blok [6] and Jaeger [7].

The temperature at the actual contact area
can be found from equations (8) and (9) and is

6,6,Qr '
6, + 6,

T = (1,6, + T,0,)
6, + 6,)

(10)
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4.1 Sub-surface heat generation

So far it has been assumed that the heat is
generated at the interface between the solids.
In practice, the plastic deformation which
results in heat generation extends to some
depth below the surface. The effect of sub-
surface heat generation has been described
qualitatively by Ling [10], Ling and Pu [11]
and Barber [12], the former using it as an
explanation of a temperature difference between
the solids which was observed experimentally
by Ling and Simkins [13]. In fact, a temperature
difference can occur in the absence of sub-surface
heat generation as will be shown in Section 6.1,
but the exact location of heat sources becomes
particularly important if the metallic contact
at the interface is reduced by oxide layers.

Consider a sliding system consisting of two
semi-infinite solids (1 and 2) in contact at a
single circular area, with a continuous unit
heat source below the surface of solid 1 at a
point which is stationary relative to the contact
area. Let all the heat generated flow into solid 1
(i.e. none flows through the contact area into
solid 2) and let the temperature at infinity in
solid 1 (T}) be zero. In the Appendix, an ex-
pression is derived which gives the average
temperature (0,,) produced at the contact
area in these circumstances as a function of the
position of the sub-surface heat source and the
velocity and radius of the contact area Since
we have specified that there is no heat flow into
solid 2, its temperature must be uniform (except
in the region close to the contact area) and
equal to 0,,. Thus, the temperature at infinity
in solid 2 (T3) is equal to 6,,.

The heat flow solution for general values of
T, and T, is obtained by superposition of a heat
flow (Q,) through the contact area. Thus

0, = = (T~ 0.0

6, + 6,
640 (T, —T)
=@ +6) 6,706y (1)
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and the heat flow into solid 1 (Q,) is
0 =0r—0Q,
_ 0, +0,-6,)0r (T, - T1). (12)
0, + 6, 6, +6,)
The temperature at the contact area is
T=T,+0,0,
_ (Ti6, + T,8,) | 60,,6,0r (13)
6, + 0,) (0, + 6,)

Equations (8)(10) can thus be considered as
special cases of equations (11)«(13) in which
0,y = 0,. ie. for which the heat source is uni-
formly distributed over the contact area. The
results derived in the Appendix are therefore
plotted in Fig. 1 in the form 8,/0 to demonstrate
the effect of the location of the heat source on
the distribution of heat between the solids.
In the particular case where T; = T,, equation
(11) shows that Q, is directly proportional to
051. Thus, the effect of removing the heat source
from the contact area to a position below the
surface of solid 1 is to reduce the heat flow into
solid 2 in the proportion 6,,/0,.

Figure 1 shows that the location of the heat
source becomes critical at high speeds, but if
Va/4ic is less than 1 and most of the heat is
generated near to the contact area, the surface
heat source solution will probably be reasonably
accurate.

The heat flow due to a general distribution of
heat sources in one or both solids can be found
by a suitable integration of 6, The temperatures
(6,4, 0,,) at the contact area in each solid are
found on the assumptign that no heat flows
through it. Since the temperature at the contact
area must be continuous, the temperatures at
infinity must differ by (6,, — 6,,). The solution
is then generalised by superposing a general
heat flow through the contact area.

It should be noted that the velocity V which
occurs in equation (A4) is the velocity of the
source relative to the solid in which it is situated.
Thus V will not generally be the same for the
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two solids, but the algebraic difference of the
velocities will equal the relative velocity of the
solids.

4.2 Transient contact areas

Under certain circumstances, the actual con-
tact areas between the solids (and consequently
the heat sources) will be transient, in which case
the foregoing analysis is not exact. However,
it will still be acceptable as an approximation
provided that a steady thermal state is reached
at an carly stage of the contact cycle. This
condition is satisfied if a/./(4xt) < 1, where a
is the radius of the contact area, ¢ is its duration
and x is the thermal diffusivity of the material.

Short duration contacts can be produced by
geometrical limitations of the sliding system.
Thus, if one of the two sliding solids is small,
an asperity in the other surface will only be able
to plough through it for a short distance and
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the actual contact areas will be of short duration.
However, a more important transient contact
mechanism is that associated with a shearing
interaction. If the two solids have similar
mechanical properties, the typical interaction
will not be the ploughing of one solid by the
other, but the symmetricat digtortion of adhesive
junctions between the solids culminating in their
fracture. A steady state is maintained since new
junctions are formed continuously. The duration
of such a junction is limited by the maximum
strain which it can endure before fracture. From
a thermal point of view, the most significant
difference between this mechanism and that of
ploughing is that the adhesive junction distorts
symmetrically with respect to each solid. Further-
more, if we regard the plastic distortion and
consequently the heat source as being localised
in a small volume of metal connecting the
surfaces, the heat input to each surface is

6,/8

Z,/a =01
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localised in the area of attachment of the
junction and this is approximately stationary
in the surface. The relative motion is taken up
by the distortion of the junction.

The iransient heat flow problem presents
analytical difficulties, but an approximate solu-
tion has been obtained for the range in which ¢
is small [ie. when exp(—a?/4xt) € 1] and is
described more fully in Barber [14]. The basic
results are as follows.

If the temperatures of the solids at infinity are
equal (T; = T,), the heat generated at a transient
contact is distributed in such a way that

_Q_l - chzx/’cz
Q. plclx/xl

The same result is obtained for high speed,
steady state sliding, if the contact area moves
symmetrically with respect to both solids.
However, at low speeds the steady state solution
is

(4

gl _ PaCaKs
0, pic1ky
If T, # T,, there will also be a superposed

heat flow through the contact area, the average
value of which is approximately

8aX(Ty — Tp) plpzclc2\/(’€1x2) (16)
N{) prci (k1) + p2ca/(Ky)

where t is the duration of the contact. The corre-
sponding low speed steady state solution is

(15)

0=

P1P2C1C2K 1Ky )
P1C1Ky + PaCaKy

However, at high speeds, an equation similar
to equation (16) is obtained except that the
duration of the contact (f) is replaced by a
multiple of a/V (ie. by the time taken for the
contact area to traverse a distance comparable
with its radius). This similarity between the
short duration transient and steady state, high
speed solutions results from the fact that, in
each case, the heat flow in all directions except
that normal to the surface can be neglected

Q = 4a(T, - T:)(
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during the period when the contact area is over-
head. The results demonstrate the overriding
importance of the relative motion of the contact
area and the solids in high-speed sliding heat

a R I P
IIOW PIODI€ims.

5. SYSTEMS WITH SEVERAL ACTUAL
CONTACT AREAS

In general, two sliding solids will make
contact at several actual contact areas, the
number and size distribution of which will
depend on the profiles of the surfaces and the
applied load. If the contact conditions and the
heat source distributions are specified, the
problem is essentially similar to that of a single
contact area with a non-uniform distribution
of heat sources. A numerical solution could be
obtained from a series of linear simultaneous
equations by a suitable subdivision of the dis-
continuous contact area. This method was used
by Chao and Trigger [15] to find the tempera-
ture distribution over the tool chip interface
during metal cutting. However, when the actual
contact areas are well separated, an approxi-
mate analytical solution can be obtained.

As a first approximation, suppose that there
is no interaction between the temperature
fields of adjacent contact areas. In this case, the
solution is obtained by a suitable summation
of equations (8) and (9) over the contact areas.

Thus
. 02rqr
@= Z @y +0)

r=n 1
T, — T, —_— 18
+ (T 2) Z 0y, + 0,,) 18)

where 0,,, 6,, are the values of 6,, 8, for the
rth contact area and g, is the heat generated at it
per unit time. 7; and T,, the temperatures at
infinity, are the same for all contact areas.

This approximation will fail if any two contact
areas are separated by a distance which is not
large in comparison with their linear dimensions,
since, in this case, a heat input at one area will



864

produce a significant rise in temperature at the
other. In order to take account of this effect,
we need to replace equation (16) by n equations
relating the heat flow rates (g,) to the tempera-
tures at the individual contact areas (7).
Thus, the temperature at the rth contact arca
is the sum of the temperatures produced there
by the heat flow from it into the solid, given
by equation (8), and that due to the heat flow
from all the other contacts. However, the second
term is approximately equal to the temperature
which would be produced at the same point
by the same total heat input distributed con-
tinuously over the nominal contact area. Thus,
the interaction between the temperature fields of
adjacent heat sources may be regarded as the
additional thermal resistance caused by the
finite size of the nominal contact area. Green-
wood [16] has examined the validity of this
approximation for distributions of stationary
contact arcas of varying size and found that it
is accurate to 2 per cent except for obviously
singular distributions. The effect of actual
contact area distribution is also discussed by
Cooper et al. [17]. The method is best explained
with the aid of an example.

Consider a number (n) of stationary contact
areas each of radius @ and with a heat input
rate ¢, uniformly distributed over a circular
nominal contact area of radius b on the surface
of a semi-infinite solid. The temperature at a
particular contact area can be found by super-
posing the n solutions for each heat input taken
independently. However, only the temperature
near a contact area is significantly affected by
its radius. Thus, in finding the temperature at
the rth contact area, we can approximate the
remaining (n — 1) heat sources to equal sources
uniformly distributed over circles of radius
b/\/n, concentric with the actual contacts.
Now a set of n heat sources of radius b/,/n,
uniformly distributed over a circle of radius b
is approximately equivalent to a single source
of strength ng, uniformly distributed over the
same circle. Thus, the temperature at the rth
contact area can be obtained by superposing
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(1) A heat input of strength ng uniformly
distributed over the nominal contact area
(radius b).

(2) A heat input of strength g at the rth
contact area (radius a).

(3) A heat output of strength g uniformly
distributed over a circle of radius b/\/n con-
centric with the rth contact area.

The sum of terms 1 and 3 is an approximation
to the temperature produced at the rth contact
area by the other (n — 1) heat sources.

The comparable problem of n equal stationary
contact areas uniformly distributed over the
end of a cylindrical conductor has been the
subject of extensive study in the field of thermal
contact conductance. The results are generally
expressed in terms of the fractional reduction
(¥) in constriction resistance through a single
contact caused by the finite size of the con-
ductor. This result is then extended to the
multiple contact problem by dividing the con-
ductor into a bundle of parallel rods in such a
way that the end of each rod contains one actual
contact area and there is no heat flow between
adjacent rods. The problem is thus resolved into
one of n resistances in parallel, each of which is
known as a particular example of the single
contact solution. However, the function (i)
must now be related to the radius of the indivi-
dual rods; if the conductor has a radius b, this
will be b/\/n.

By analogy with the cylindrical conductor
problem, we can define y for the semi-infinite
solid as the fractional reduction in constriction
resistance due to the finite size of the nominal
contact area, i.e. the ratio of the temperatures
of the rth contact area due to (3) and (2) above.
Thus, since the constriction resistance is inversely
proportional to the radius of the contact area,

a/n
=" (19)

This result also provides a reasonable approxi-
mation for the cylindrical conductor of diameter
b (cf. the results of Hunter and Williams [18]).
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5.1 Method of solution for solids with several
contact areas

When the solids make contact at several
discrete areas, it is convenient to modify the
method of solution outlined earlier by including
the thermal resistance of the nominal contact
area, term (1) above, in the equations (1) and (2)
(i.e. as part of the large scale thermal resistance).
The constriction alleviation term, term (3)
above, is included in the semi-infinite solution.
With these modifications, the only additional
complication introduced by the multi-contact
system is the replacement of a relationship
such as equations (8) and (9) by a summation
or integration over a known series of contacts
such as equation (18). In fact, if all the contact
areas and heat sources are similar, this equation
merely becomes

0, = nbhg + n(T; — T)
1 6, + 0,)

This procedure contains an implicit assumption :
that the bulk temperature i.e. the temperature
produced by the equivalent continuously distri-
buted source—term (1) above + T, is constant
over the nominal contact area. In practice,
this assumption is not justified and we should
take account of the variation of bulk tempera-
ture. However, the additional complexity
introduced by this variation is not usually
justified by the accuracy of our knowledge
of the boundary conditions of the problem and
it is therefore more reasonable to approximate
the bulk temperature to its average value over
nominal contact area. This is a ‘large-scale’
version of Jaeger’s approximation referred to
in the discussion of semi-infinite solid solutions
(Section 4).

(20)

6. DISCUSSION
6.1 The bulk temperature difference or tempera-
ture jump
The irregularity in the temperature field
produced by a heat input at an actual contact
area is only significant in its immediate vicinity

and a typical contact area is believed to be
about 10~° m dia. (see for example Rabinowicz
[19]). Thus, the limitations on size and position-
ing of embedded thermocouples ensure that
they will not respond to the temperatures at the
actual contact areas, but will record the bulk
temperature.

The temperature at an actual contact area
must be the same in both solids (to maintain
continuity), but it is not necessary for the bulk
temperature of the two solids to be equal, or,
for that matter, for T; to equal T,. Thus, in
general, if a thermocouple is embedded beneath
the surface of each solid, there will be a difference
between their temperature readings.

This temperature difference was observed by
Ling and Simkins [13]. In more recent papers,
Ling proposed an explanation based on sub-
surface heat generation. He said that ‘Whenever
the capacity of one of the bodies to remove heat
away from the interfacial zone is less than the
amount of heat generated on that surface, there
will be a temperature jump across the interface’
(Ling and Pu [11], Ling [10]).

However, the existence of a temperature jump
is not conclusive evidence in favour of sub-
surface heat generation. The bulk temperatures
will be equal, i.e. there will be no temperature
jump, only when the temperature field near to
an actual contact area is similar to that in the
corresponding semi-infinite solids with egual
temperatures at infinity. Thus, a temperature
jump is produced whenever the ratio of the large
scale thermal conductances away from the inter-
face differs from the ratio of heat inputs which
would be produced in the same solids if these large
scale conductances were infinite.

Suppose that one of the solids is completely
insulated from the surroundings so that no
heat can flow from it except through the inter-
face. Let there be one area of actual contact and
let all the heat be generated in the other, non-
insulated solid. In the steady state, no heat will
flow through the actual contact area and Ling’s
criterion predicts that there cannot be a tem-
perature jump between the solids. However, since
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there is no heat flow at all in the insulated solid,
its temperature will be uniform and equal to
that at the contact area. There will therefore be
a temperature jump between the solids unless
the bulk of the non-insulated solid is also at the
contact area temperature. This condition can
only be satisfied if the heat source is not only
below the surface, but sufficiently distant from
the actual contact area for the temperature at
the latter to be equal to the average temperature
over the nominal contact area. This problem is
also discussed by Johnson [20].

6.2 The effect of material properties on the
boundary conditions

In order to apply the foregoing solutions to a
practical sliding contact problem, we need to
make some assumptions or observations about
the microscopic boundary conditions at the
interface. Thus, we need to know the number,
size and duration of the actual contact areas,
their velocities relative to the two surfaces and
the location and strength of the associated heat
sources. These factors are all determined by the
nature of the mechanical interactions between
the asperities of the surfaces.

It must be emphasised that, whereas the
motion of the nominal contact area relative to
the solids is determined by the geometry of the
system, the motion of the actual contact areas
is determined only by the nature of the de-
formation process*. Thus, if solid 1 is much
harder than solid 2, its asperities will plough
through solid 2 causing the actual contact
areas to be stationary relative to solid 1 and to
move relative to solid 2. The quantity 6 decreases
as the speed of the contact area over the surface
increases so that in this case 6, > 0,. Thus from
equations (6) and (7), Q, > Q,.

Furthermore, most of the plastic deformation
(and hence the heat generation) will take place
in the ploughed solid (2) and this fact also tends
to increase the ratio Q,/Q;.

* The duration of a particular actual contact area is
however influenced by the large scale geometry (see 4.2).
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Thus, in an otherwise symmetrical sliding
system, the greater part of the heat generated
by friction should flow into the softer solid.
If the system is finite and there is an equal resist-
ance to heat flow from each solid, this will
cause the softer solid to have the higher bulk
temperature. The effect will become more
noticeable at high sliding speeds, since 6 de-
creases continuously with increasing speed.

Most metals become softer with increasing
temperature so that this asymmetry in heat
flow should exaggerate the difference in hardness
between the two solids. This could conceivably
lead to an instability in the sliding of similar
solids. Thus, if either solid is initially hotter
than the other, the consequent difference in
hardness between them will cause an asymmetry
in heat flow which tends to perpetuate the
condition. No experimental evidence of such a
process has been reported and it is only likely
to occur if the rate of heat generation is sufficient
to raise the bulk temperature of the solids into
the range where thermal softening is significant.
However, Manton et al. [21] have observed
a comparable asymmetry in the heat flow from
a lubricated rolling/sliding contact which they
attribute to the effect of temperature on viscosity.
This causes the location of maximum shear
strain rate to be displaced from the centre of the
lubricant film towards the hotter surface and
hence increases the proportion of heat flow into
the latter.

The mechanism of asperity interaction in the
sliding of similar metals is difficult to predict.
Initially, the asperities will probably adhere
and distort symmetrically, but during sliding
they will become work hardened and some
ploughing will probably occur in both solids.
However, the symmetry of the system requires
that the heat generated should be divided
equally between the solids if their bulk tem-
peratures are equal.

7. CONCLUSIONS
Previous solutions to practical sliding contact
heat flow problems have generally been based
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on the assumption that the system can be
approximated to two semi-infinite solids with
zero temperatures at infinity. The introduction
of large scale thermal resistances into the system
generally produces a temperature difference
between the boundaries of the two solids and a
more reasonable approximation is that of two
semi-infinite solids of which the temperatures
at infinity are related to the heat flow through
them. This modification has a relatively small
effect on the temperature at the actual contact
areas unless the restrictions to heat flow are
large, but the division of heat between the solids
is disturbed.

An approximate solution to a practical
problem can be obtained from the following
simultaneous equations

1. Two equations relating the temperature of
the distant boundaries of each solid (T, T;) to
the heat losses from them (Q,, @,).

2. An equation relating the temperatures
Ty, T, (now considered as the temperatures at
infinity in two semi-infinite solids) to the distri-
bution between the solids of a known total
heat source (Qy).

The form of this ‘semi-infinite’ equation (2)
depends on the boundary conditions at the
interface. A number of existing solutions have
been generalised to allow for a difference
between the temperatures at infinity in the two
solids and a new particular solution, for the
case of sub-surface heat generation, is derived
in the Appendix.

When there are several areas of actual contact,
it has been shown that the interaction between
their temperature fields is equivalent to the
additional constriction resistance of the nominal
contact area. In this case, the average tempera-
tures over the nominal contact area (referred to
here as the bulk temperatures) have to be
equated to the temperatures at infinity in the
semi-infinite solid solution and a correction has
to be made to the latter to take account of the
fact that the heat flow through the actual
contact areas is only spreading out into a finite
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conductor. This correction is discussed by
Hunter and Williams [18] and is described by
them as the ‘constriction alleviation factor’.

The division of heat between the solids is very
sensitive to the motion of the actual contact
areas relative to the solids. This motion depends
upon the physical properties of the surfaces and
it is deduced that, at high speeds, most of the
heat will flow into the softer solid.
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APPENDIX
The temperature produced in an infinite solid by a point
source moving through it at a speed V is obtained by
integrating equation (5) and is

J. R. BARBER

4 Jexp{~V[J? =y + 2% — x]/2x}
JO2 + y2 + 22
N exp{~V{/[x* +y* + (z + 220)°] ~ >§}/’2K)4
JIE+ 3+ (2 + 22071
where x, y, z are the co-ordinates of the point relative to the
source at any instant, x being measured in the direction of
motion of the source, y in the direction perpendicular to x
and parallel to the surface plane and z perpendicular to the
surface plane.
In particular, the temperature at a point on the surface
(x,y, —zg)is

T = o
dnkpe |,

(A2)

g exp{-V[J&* +y* + 23 - x]/2x}

- '2m<pc

VO + 97+ 2d)

(A3)
Equation (A.3) may be integrated to give the average
temperature over a circular area on the surface

aln

T(ave) = g0, = -

I jj‘ rCXp(——V{\/[(xj- reos6)? + (y + rsin8)? + z;} — (x + rcos )}/2x)d0 dr

exp[—V(r — x)/2x] (A1)

4zkper

where g is the rate of heat input and x is the projection of the
length r onto the direction of motion of the heat source.

To extend this result to the semi-infinite solid, we intro-
duce an identical source moving parallel to the first at a
distance of 2z, measured perpendicular to the direction of
motion. The infinite solid is now symmetrical about the
plane which perpendicularly bisects the line joining the two
sources. The temperature field must also be symmetrical,
thus no heat can flow across this plane and we have the
solution for the temperature in a semi-infinite solid due to a
pont source moving parallel to the surface at a depth z,,

(A4}

JIx + reos 0 + (y + rsin6)? + 23]

where a is the radius of the area and x, y, —z, are the co-
ordinates of its centre.

This integral is not analytic, but some approximate
numerical values have been obtained for the particular case
of y = 0 (i.e. for moving point sources passing perpendicu-
larly below the centre of the circle) and these are presented
in figure one for various values of the non-dimensional
speed (V' = Va/2x). The co-ordinates x and z are given as
multiples of the radius a and z is measured from the surface
to the source. Temperatures are plotted in the form 646
where 6 is the average temperature due to an equal source
distributed uniformly over the circle.

The solution for a distributed source could be obtained
by a suitable integration of equation (A.4).

CONDUCTION DE LA CHALEUR A PARTIR DE SOLIDES EN GLISSEMENT

Résumé—Les limitations d’échelle importantes du flux de chaleur a partir de deux solides en glissement
peuvent avoir un grand effet sur le champ de température prés de 'interface. On montre qu’un systéme
pratique peut étre représenté d’une fagon approchée par deux solides semi-infinis dont les températures a
I’infini sont reliées aux flux de chaleur A travers eux. Un grand nombre de solutions existantes pour des
solides semi-infinis ont été généralisées pour tenir compte d’une différence entre les températures a I'infini
et une nouvelle solution particuliére est élaborée dans le cas d’une production de chaleur sous la surface.
La méthode est alors étendue aux situations avec plusieurs surfaces de contact et I'effet des propriétés
géométriques et physiques sur les conditions aux limites interfaciales est discuté.
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DIE WARMELEITUNG IN BEWEGTEN KORPERN

Zusammenfassung—Die zahlreichen Widerstinde fiir den Wirmestrom zwischen zwei gleitenden K6rpern
konnen einen erheblichen FEinfluss auf das Temperaturfeld nahe der Zwischenschicht haben. Es wird
gezeigt, dass ein praktisches System durch zwei halbunendliche Kdrper approximiert werden kann, deren
Temperaturen im Unendlichen dabei in Beziehung mit der Grsse des sie durchdringenden Wirmestroms
stehen. Eine Anzahl bekannter Losungen fiir Halbunendliche K6rper wurde verallgemeinert um einen
Unterschied der Temperaturen im Unendlichen zu beriicksichtigen und ausserdem wird eine neue
partikulire Losung fiir den Fall der Warmeerzeugung unterhalb der Oberfliche entwickelt. Die Methode
wird erweitert auf Anordnungen mit mehreren Kontaktflichen und der Einfluss von geometrischen und
physikalischen Grossen auf die Grenzbedingungen der Zwischenschicht wird untersucht.

NEPEJJAYA TEIIJIA TEIIJIOITPOBOJHOCTBIO OT CROJB3AINIMNX
TBEP/BIX TEJI

Annoranua—YccienoBanach mepefavya Temaa TEMUIONPOBOSHOCTHI0 IIPH  CHOJbBMKEHMH
TBepAHIX Tes Gosbinoro pasMepa. [lokasaHo, 4TO NPAKTHYECKYIO CHCTEMY MOMKHO QNNpPOKCH-
MUpPOBATh ABYMA MONYGEeCKOHEUHBIMHI TBePABIMU TeJdaMU, TeMIIEpaTypa KOTOPEIX B (eCKOHe-
YHOCTH OTHOCHUTCA K TENJIOBOMY TOTOKY, NMpOXoAAimleMy duepes st Tenma. OGobmieH psapx
UMEOHIMXCH pelleHn#t A Nony(ecKOHEYHBIX TBePHHIX Tell C Ledbl0 y4éra pPasHOCTH
TeMmepaTryp B GeCKOHEUHOCTH ¥ pa3pafoTaHO HOBOE YACTHOE pelleHue [JIA CIydas FeHepHpo-
BaHUA TEIJIa MOJ[ IIOBEPXHOCTBI0. 3aT€M MEeTOX ORI IPUMEHEH K CIYYaAM € HECKOJIbKUMU
KOHTAKTHBIMH TIIOMAIAMA U PACCMOTPEHO BIMAHNE reOMeTPUYECKNX M QUSMUYECKUX CBOMCTB
HA IPPaHUYHbBIE YCIOBUA HA HOBEPXHOCTH pPasaea.
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