
ht. J. Heat Mass Tmnsfer. Vol. 13, pp. 857469. Pergamon Press 1970. Printed in Great Britain 

THE CONDUCTION OF HEAT FROM SLIDING SOLIDS 

J. R. BARBER 

Department of Mechanical Engineering, University of Newcastle upon Tyne, Newcastle upon Tyne, England. 

(Received 13 October 1969) 

Ah&act-The large scale restrictions to heat flow from two sliding solids can have a significant effect on 
the temperature field near the interface. It is shown that a practical system can be approximated to two 
semi-intinite solids whose temperatures at infinity are related to the heat flow rates through them. A 
number of existing semi-infinite solid solutions am generalised to allow for a difference between the tem- 
peratures at infinity and a new particular solution is developed for the case of sub-surface heat generation. 
The method is then extended to situations with several contact areas and the effect of geometrical and 

physical properties on the interfacial boundary conditions is discussed. 

NOMENCLATURE 

radius of an actual contact area; 
radius of the nominal contact area; 
specific heat ; 
heat flow into solids 1, 2; 
total rate of heat generation ; 
heat input to the ith contact area; 
total number of actual contact areas ; 
distance from the heat source ; 
temperatures of the boundaries (or 
at infinity) of the solids 1,2; 
time; ’ 
relative velocity ; 
projection of the distance r onto the 
direction of relative motion ; 
perpendicular distance from the sur- 
face ; 
depth of a sub-surface heat source ; 
thermal diffusivity ; 
fractional reduction in constriction 
resistance due to the finite size of the 
nominal contact area; 
density ; 
temperature produced at the contact 
area by a unit heat input to solids 1,2 ; 
temperature produced at the contact 
area by a unit sub-surface heat 
input to solid 1. 

1. INTRODUCTION 

IT IS now generally accepted that one of the 
most important parameters in all sliding contact 
systems is the temperature field in the vicinity 
of the sliding surfaces. This can infhtence the 
process in a variety of ways, notably by con- 
trolling the oxidation rate at the interface, the 
adsorption of gases and lubricants, the mechani- 
cal properties of the surface layers and the 
viscosity of the lubricant. 

A number of solutions to the relevant heat 
conduction problem have been published, but 
these have been largely concerned with the 
ideal case of two semi-infinite solids, with zero 
temperatures at infinity, making contact at a 
single area in the interfacial plane. These solu- 
tions have frequently been used out of context 
and the present paper demonstrates some of 
the changes produced in the temperature field 
by the practical limitations of finite systems 
and large scale thermal restrictions. 

The boundary conditions in a practical sliding 
system do not generally admit an exact analytical 
solution and a choice has to be made between a 
numerical solution (e.g. by a relaxation or finite 
difference equation method) and the use of a 
physical and/or analytical approximation. The 
latter method is used here, not because it is 
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necessarily the best method to use in all cir- 
cumstances, but because it enables the effect of 
the boundary conditions on the solution to be 
presented with greater generality. However, 
it is worth remarking that the greatest limitation 
on accuracy is that imposed by the absence of 
reliable information about the boundary con- 
ditions at the interface. There is therefore little 
justification for obtaining a high numerical 
accuracy for a particular solution. However, 
accurate solutions are necessary for assessing 
the reliability of the approximate methods. 

It is shown how an approximate solution to a 
practical problem can be derived from a know- 
ledge of the restrictions to heat flow from the 
remote surfaces of the solids and the effect of 
changes in the temperatures at infinity in the 
semi-infinite solids solution appropriate to 
the microscopic boundary conditions at the 
interface. In Section 4, a number of particular 
solutions to the latter problem are derived from 
existing ‘equal-temperatures-at-infinity’ solu- 
tions and a new solution is obtained for the 
particular case where heat is generated below 
the surface of one of the solids. The discussion 
is then extended to situations with several 
contact areas whose temperature fields interact 
(Section 5). 

The division of frictional heat between the 
solids proves to be very sensitive to the motion 
of the contact area relative to the surfaces. In 
practice, this relative motion is determined by 
the nature of the individual interactions between 
the asperities of the surfaces. The solutions of 
the heat conduction problem are therefore 
interpreted in their physical context in the 
Discussion. 

2. BOUNDARY CONDITIONS OF THE PROBLEM 

The essential features of sliding systems which 
influence the heat flow are the nature of the 
contact between the solids, the distribution of 
heat sources and the large scale cooling effects 
at the non-contacting surfaces. 

2.1 The area of contact 
The area of each surface within which contact 

is possible will be defined by the geometry of 
the sliding system; this is known as the nominal 
contact area. However, the solids will not 
necessarily be in actual contact continuously 
over the entire nominal area. Bowden and 
Tabor and others have shown that the roughness 
of surfaces restricts their actual contact to a 
number of small areas at the peaks of the 
surface asperities. As the load is increased, 
these asperities deform allowing the solids 
to move closer together and causing more 
contact areas to be formed. A recent account of 
the theory of the contact of stationary solids has 
been published by Greenwood [l]. There is a 
considerable amount of evidence to suggest 
that the contact of sliding solids is also restricted 
to a number of small areas. However, in this 
case the distortion produced by the relative 
motion of the solids will cause the actual contact 
areas either to be transient due to the fracture 
of the junctions, or to move relative to one or 
both solids. 

2.2 The location of the heat sources 
The heat generated during sliding is associated 

with the plastic deformation caused by mechani- 
cal interaction between the solids at or near the 
actual contact areas. The distribution of the 
heat source therefore depends on the nature of 
these interactions. Some indication of the 
location of plastic deformation is given by the 
studies of large scale model junctions by 
Green [2], Greenwood and Tabor [3] and 
Brockley and Fleming [4]. Their work supports 
the general proposition that most of the heat 
is generated within the sphere of which the actual 
contact area forms a diametral plane. 

2.3 Large scale cooling effects 
It is sometimes argued that, if the distance 

between the cooled boundaries of the solids 
and the interface is large in comparison with 
the dimensions of the actual contact regions 
(as is generally the case), it is possible to approxi- 
mate the system to two semi-infinite solids. It 
is true that the temperatures at such remote 
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regions of the semi-infinite solids are scarcely 
affected by the conditions at the interface. 
However, the material beyond these imaginary 
boundaries performs the function of an infinite 
heat sink of negligible thermal resistance. In a 
finite system in a steady thermal state, this 
infinite heat sink is replaced by a practical heat- 
transfer process which causes the average tem- 
perature of the sundries to be related to the 
heat flow from them. 
Thus 

Q, = F1(&) (11 

Qz = flA?z) (2) 

where Qr, Qz are the rates of heat flow through 
the solids 1, 2 respectively and T1, Tz are the 
temperatures of their exposed surfaces. 

In the contact of two semi-infinite solids, the 
temperature at infinity is unaffected by any 
changes in the temperature at the contact area 
(assumed finite), but the temperature at infinity 
does affect the temperature field near the contact 
area, Similarly, even if the boundaries of two 
finite solids are s~ciently remote from the 
interface to be unaffected by the contact con- 
ditions there, the tem~rature field near the 
contact area and the distribution of heat between 
the solids will be affected by the temperature of 
the boundaries. In fact, this practical system 
can be approx~at~ to two sea-in~nite solids 
with the same contact conditions, but of which 
the temperatures at infinity are related to the 
heat flow rates by equations (1) and (2) 

3. FOOD OF SOLUTION 

In general, the relationships given by equau 
tions (1) and (2) will be known or may be found 
by independent experiments on the solids. Also, 
the total rate of heat generation at the interface 
(Qr) will be determined by the mechanical 
conditions at the interface and 

QI +Qz =QF (3) 

In order to produce a solhim, we also need to 
find the effect of the unknown ‘temperatures at 

infinity’ (T,, Tz) and the known interfacial 
contact and heat generation conditions on the 
distribution of Qr between two semi-infinite 
solids. This will provide a fourth equation rela- 
ting the four unknowns (Qi, Q2, T,, ‘&I. This 
relationship can be obtained by superposing 
two subsidiary solutions : 

(1) with the same boundary conditions except 
that the temperatures at infinity are both zero, 

(2) with non-zero temperatures at infinity 
(T,, T!), but with no heat generation at the 
interface. 

This approach allows us to make use of existing 
solutions to problem (1). The effect of various 
contact conditions on these semi-infinite solid 
solutions will be discussed in section 4. 

4. THE SEMI-INURE SOLID SOLUTION 

The temperature (T) in an infinite solid, 
initially at zero tem~rature, due to an in- 
stantaneous point source of heat at time t = 0 
is subs~uently given by 

Q f’ 
T ==8pcJ(n~t)~~~ \- 4xt (41 

where Q is the quantity of heat liberated, r is 
the distance from the source and the solid has 
density p, specific heat c and thermal diffusivity ic 
(Carslaw and Jaeger [S]). 

Since the infinite solid is spherically sym- 
metrical about the point source, there can be no 
heat flow across a diametral plane and the 
tem~rature reached in a semi-ignite solid with 
an instantaneous point source on the surface 
and no heat loss from the surface is 

T= Q 
4PcJ(nlct)eXp 

(5) 

since all the heat is now directed into one half 
space, 

This solution may be extended by integration 
to any distribution of heat in$t on the surface 
of a semi-infinite solid and it is the basis of 
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most of the work on heat conduction during 
sliding. 

Blok [6] and Jaeger [7] have both produced 
approximate solutions to the problem of two 
solids in relative motion with a continuous 
heat source uniformly distributed over the area 
of contact, the latter being stationary with 
respect to one solid. Circular, square and band 
heat sources were considered all of which gave 
very similar results. The solids were both 
assumed to be semi-infinite with zero tempera- 
ture at infinity. 

The problem was solved by finding the tem- 
perature at the contact area due to a uniformly 
distributed heat input to each solid, by inte- 
gration of equation (5). The distribution of heat 
between the surfaces was then adjusted to 
equal& these temperatures. Thus, if a unit 
heat input causes the temperature of the contact 
area in solids 1 and 2 to be Or and 6, respectively, 
the actual heat flow into the solids will be 

0ZQT 
Q1 = (0, + 8,) 

OlQT 
Qz = (e, + 0,)’ 

These equations satisfy equation (3) and cause 
the temperature at the contact area in each solid 
to be OltIZQT/(O1 + O,), the equality being 
required for continuity of temperature through 
the contact. 

It is not strictly correct to specify a uniformly 
distributed heat input to each solid since, 
although the heat source is assumed to be 
uniform, the distribution of heat between the 
solids will vary over the contact area As a 
consequence of this approximation, it is not 
possible to match the temperature over the entire 
contact area: Blok equates the maximum 
temperatures at the interface whilst Jaeger 
equates the average temperature over the contact 
area The latter method takes some account of 
the variation of temperature over the contact 
area and is thus less likely to fail under unusual 
conditions. 

A more exact solution to this problem has 
recently been produced by Cameron et al. [S] 
by matching the temperature at all points in 
the contact area by a numerical method and 
thus allowing for the variation of heat distri- 
bution with position. They also solve for the 
case where the contact area moves relative to 
both solids They conclude that the solutions of 
Blok and Jaeger are remarkably accurate in 
spite of the approximate method (Symm [9]). 
In view of the additional complications intro- 
duced by the more exact solution, it is reasonable 
to use the approximate method unless a high 
accuracy is required. 

The solution to the parallel problem with non- 
zero temperatures at infinity and no heat genera- 
tion can be found from Jaeger’s results by a 
similar temperature matching process in which 
the heat flow in the hotter solid is reversed. 
Thus it follows from the above definitions that a 
temperature difference of (0, + 0,) between the 
remote boundaries of the two solids will cause a 
unit heat flow between them, within the limits 
imposed by the Jaeger approximation. 

Combining these results we can derive the 
following equations for Qr, Q2 when the tem- 
peratures at infinity are T,, TZ 

QI = 
&Q, + 0-i - Tl) 

(6 + 4) ’ (8) 

Qz = 
&Q, + U-1 - TJ 

(el+e,) 
(9) 

It should be noted that the quantities 01, O2 
are temperature differences per unit heat flow 
so dimensional consistency is preserved. They 
depend on the shape of the contact area and its 
velocity relative to the solid Mathematical 
expressions and numerical values can be found 
in Blok [6] and Jaeger [7]. 

The temperature at the actual contact area 
can be found from equations (8) and (9) and is 
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4.1 Sub-surface heat generation 
So far it has been assumed that the heat is 

generated at the interface between the solids. 
In practice, the plastic deformation which 
results in heat generation extends to some 
depth below the surface. The effect of sub- 
surface heat generation has been described 
qualitatively by Ling [lo], Ling and Pu [ 111 
and Barber [12], the former using it as an 
explanation of a temperature difference between 
the solids which was observed experimentally 
by Ling and Simkins [ 131. In fact, a temperature 
difference can occur in the absence of sub-surface 
heat generation as will be shown in Section 6.1, 
but the exact location of heat sources becomes 
particularly important if the metallic contact 
at the interface is reduced by oxide layers. 

Consider a sliding system consisting of two 
semi-infinite solids (1 and 2) in contact at a 
single circular area, with a continuous unit 
heat source below the surface of solid 1 at a 
point which is stationary relative to the contact 
area Let all the heat generated flow into solid 1 
(i.e. none flows through the contact area into 
solid 2) and let the temperature at infinity in 
solid 1 (T1) be zero. In the Appendix, an ex- 
pression is derived which gives the average 
temperature (e,,) produced at the contact 
area in these circumstances as a function of the 
position of the sub-surface heat source and the 
velocity and radius of the contact area Since 
we have specified that there is no heat flow into 
solid 2, its temperature must be uniform (except 
in the region close to the contact area) and 
equal to fIsi. Thus, the temperature at infinity 
in solid 2 (T,) is equal to 0,,. 

The heat flow solution for general values of 
Tl and T, is obtained by superposition of a heat 
flow (Qz) through the contact area Thus 

Qz = Ti - Vi - %,QT) 
(4 + 4) 

%lQT K - T,) 
= (4 + 0,) + (e, + e,) 

(11) 

and the heat flow into solid 1 (Qr) is 

Qt = QT - Qz 

= (4 + 8, - 4,) QT + (T, - m 
oh + 4) (4 + e,s (12) 

The temperature at the contact area is 

T = T, + c&Q, 

= (m + wl) + u%QT 
(4 + e,) (0, + 0,) 

(13) 

Equations (@-o-(O) can thus be considered as 
special cases of equations (11)-(13) in which 
8 si = el. i.e. for which the heat source is uni- 
formly distributed over the contact area The 
results derived in the Appendix are therefore 
plotted in Fig 1 in the form t&/l9 to demonstrate 
the effect of the location of the heat source on 
the distribution of heat between the solids. 
In the particular case where Tl = T,, equation 
(11) shows that Qz is directly proportional to 
8,,. Thus, the effect of removing the heat source 
from the contact area to a position below the 
surface of solid 1 is to reduce the heat flow into 
solid 2 in the proportion &,/iI,. 

Figure 1 shows that the location of the heat 
source becomes critical at high speeds, but if 
Va/4rc is less than 1 and most of the heat is 
generated near to the contact area, the surface 
heat source solution will probably be reasonably 
accurate. 

The heat flow due to a general distribution of 
heat sources in one or both solids can be found 
by a suitable integration of 0, The temperatures 
&, (I,,) at the contact area in each solid are 
found on the assumptiqn that no heat flows 
through it. Since the temperature at the contact 
area must be continuous, the temperatures at 
infinity must differ by ((I,, - e,,). The solution 
is then general&d by superposing a general 
heat flow through the contact area. 

It should be noted that the velocity V which 
occurs in equation (A4) is the velocity of the 
source relative to the solid in which it is situated. 
Thus Y will not generally be the same for the 
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two solids, but the algebraic difference of the 
velocities will equal the relative velocity of the 
solids. 

4.2 Transient contact areas 
Under certain circumstances, the actual con- 

tact areas between the solids (and consequently 
the heat sources) will be transient, in which case 
the foregoing analysis is not exact. However, 
it will still be acceptable as an approximation 
provided that a steady thermal state is reached 
at an early stage of the contact cycle. This 
condition is satisfied if a/,/(4lct) $ 1, where a 
is the radius of the contact area, t is its duration 
and rc is the thermal diffusivity of the material. 

Short duration contacts can be produced by 
geometrical limitations of the sliding system. 
Thus, if one of the two sliding solids is small, 
an asperity in the other surface will only be able 
to plough through it for a short distance and 

the actual contact areas will be of short duration. 
However, a more important transient contact 
mechanism is that associated with a shearing 
interaction. If the two solids have similar 
mechanical properties, the typical interaction 
will not be the ploughing of one solid by the 
other, but the symmetrical di$ortion of adhesive 
junctions between the solids culminating in their 
fracture. A steady state is maintained since new 
junctions are formed continuously. The duration 
of such a junction is limited by the maximum 
strain which it can endure before fracture. From 
a thermal point of view, the most significant 
difference between this mechanism and that of 
ploughing is that the adhesive junction distorts 
symmetrically with respect to each solid. Further- 
more, if we regard the plastic distortion and 
consequently the heat source as being localised 
in a small volume of metal connecting the 
surfaces, the heat input to each surface is 

x/o 
FIG. 1. 
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localised in the area of attachment of the 
junction and this is approximately stationary 
in the surface. The relative motion is taken up 
by the distortion of the junction. 

The transient heat flow problem presents 
analytical dificulties, but an approximate solu- 
tion has been obtained for the range in which t 
is small [i.e. when exp(-a2/4rct) Q l] and is 
described more fully in Barber [14]. The basic 
results are as follows. 

If the temperatures of the solids at infinity are 
equal ( T1 = TJ, the heat generated at a transient 
contact is distributed in such a way that 

(14) 

The same result is obtained for high speed, 
steady state sliding, if the contact area moves 
symmetrically with respect to both solids. 
However, at low speeds the steady state solution 
is 

QI ~2~2~2 
-=-. 

Q2 PICI~I 
(15) 

If T1 # T2, there will also be a superposed 
heat flow through the contact area, the average 
value of which is approximately 

Q= 
8a2(q - T,) 

Jo4 
(16) 

where t is the duration of the contact. The corre- 
sponding low speed steady state solution is 

Q = 4a(T, _ T2) p1p2c1c2K1K2 
. PlCl~l + PzC2~2 

(17) 

However, at high speeds, an equation similar 
to equation (16) is obtained except that the 
duration of the contact (t) is replaced by a 
multiple of a/V (i.e. by the time taken for the 
contact area to traverse a distance comparable 
with its radius). This similarity between the 
short duration transient and steady state, high 
speed solutions results from the fact that, in 
each case, the heat flow in all directions except 
that normal to the surface can be neglected 

during the period when the contact area is over- 
head. The results demonstrate the overriding 
importance of the relative motion of the contact 
area and the solids in high-speed sliding heat 
flow problems. 

5. SYSTEMS WITH SEVERAL ACTUAL 
CONTACT AREAS 

In general, two sliding solids will make 
contact at several actual contact areas, the 
number and size distribution of which will 
depend on the profiles of the surfaces and the 
applied load If the contact conditions and the 
heat source distributions are specified, the 
problem is essentially similar to that of a single 
contact area with a non-uniform distribution 
of heat sources. A numerical solution could be 
obtained from a series of linear simultaneous 
equations by a suitable subdivision of the dis- 
continuous contact area This method was used 
by Chao and Trigger [15] to find the tempera- 
ture distribution over the tool chip interface 
during metal cutting. However, when the actual 
contact areas are well separated, an approxi- 
mate analytical solution can be obtained. 

As a first approximation, suppose that there 
is no interaction between the temperature 
fields of adjacent contact areas. In this case, the 
solution is obtained by a suitable summation 
of equations (8) and (9) over the contact areas, 
Thus 

I=” - _ 
’ Ql = z ‘2&h 

u4, + 02,) 
r=l 

r=” 

+ (T1 - T,) c 1 

(~1, + 02,) 
(18) 

r=l 

where O,,., 8,, are the values of 8,, O2 for the 
rth contact area and 4, is the heat generated at it 
per unit time. Tl and T2, the temperatures at 
infinity, are the same for all contact areas. 

This approximation will fail if any two contact 
areas are separated by a distance which is not 
large in comparison with their linear dimensions, 
since, in this case, a heat input at one area will 



864 J. R. BARBER 

produce a significant rise in temperature at the 
other. In order to take account of this effect, 
we need to replace equation (16) by n equations 
relating the heat flow rates (ql) to the tempera- 
tures at the individual contact areas (T,). 
Thus, the temperature at the rth contact area 
is the sum of the temperatures produced there 
by the heat flow from it into the solid, given 
by equation (S), and that due to the heat flow 
from all the other contacts. However, the second 
term is approximately equal to the temperature 
which would be produced at the same point 
by the same total heat input distributed con- 
tinuously over the nominal contact area. Thus, 
the interaction between the temperature fields of 
adjacent heat sources may be regarded as the 
additional thermal resistance caused by the 
finite size of the nominal contact area. Green- 
wood [16] has examined the validity of this 
approximation for distributions of stationary 
contact areas of varying size and found that it 
is accurate to 2 per cent except for obviously 
singular distributions. The effect of actual 
contact area distribution is also discussed by 
Cooper et al. [ 171. The method is best explained 
with the aid of an example. 

Consider a number (n) of stationary contact 
areas each of radius a and with a heat input 
rate q, uniformly distributed over a circular 
nominal contact area of radius b on the surface 
of a semi-infinite solid. The temperature at a 
particular contact area can be found by super- 
posing the n solutions for each heat input taken 
independently. However, only the temperature 
near a contact area is significantly affected by 
its radius. Thus, in finding the temperature at 
the rth contact area, we can approximate the 
remaining (n - 1) heat sources to equal sources 
uniformly distributed over circles of radius 
b/,/n, concentric with the actual contacts. 
Now a set of n heat sources of radius b/ Jn, 
uniformly distributed over a circle of radius b 
is approximately equivalent to a single source 
of strength nq, uniformly distributed over the 
same circle. Thus, the temperature at the rth 
contact area can be obtained by superposing 

(1) A heat input of strength nq uniformly 
distributed over the nominal contact area 
(radius b). 

(2) A heat input of strength q at the rth 
contact area (radius a). 

(3) A heat output of strength q uniformly 
distributed over a circle of radius b/ Jn con- 
centric with the rth contact area. 

The sum of terms 1 and 3 is an approximation 
to the temperature produced at the rth contact 
area by the other (n - 1) heat sources. 

The comparable problem of n equal stationary 
contact areas uniformly distributed over the 
end of a cylindrical conductor has been the 
subject of extensive study in the field of thermal 
contact conductance. The results are generally 
expressed in terms of the fractional reduction 
($) in constriction resistance through a single 
contact caused by the finite size of the con- 
ductor. This result is then extended to the 
multiple contact problem by dividing the con- 
ductor into a bundle of parallel rods in such a 
way that the end of each rod contains one actual 
contact area and there is no heat flow between 
adjacent rods. The problem is thus resolved into 
one of n resistances in parallel, each of which is 
known as a particular example of the single 
contact solution. However, the function (9) 
must now be related to the radius of the indivi- 
dual rods ; if the conductor has a radius b, this 
will be bJJn. 

By analogy with the cylindrical conductor 
problem we can define $ for the semi-infinite 
solid as the fractional reduction in constriction 
resistance due to the finite size of the nominal 
contact area, i.e. the ratio of the temperatures 
of the rth contact area due to (3) and (2) above. 
Thus, since the constriction resistance is inversely 
proportional to the radius of the contact area, 

(19) 

This result also provides a reasonable approxi- 
mation for the cylindrical conductor of diameter 
b (cf. the results of Hunter and Williams [18]). 
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5.1 Method of solution for solids with several 
contact areas 

When the solids make contact at several 
discrete areas, it is convenient to modify the 
method of solution outlined earlier by including 
the thermal resistance of the nominal contact 
area, term (1) above, in the equations (1) and (2) 
(i.e. as part of the large scale thermal resistance). 
The constriction alleviation term, term (3) 
above, is included in the semi-infinite solution. 
With these modifications, the only additional 
complication introduced by the multi-contact 
system is the replacement of a relationship 
such as equations (8) and (9) by a summation 
or integration over a known series of contacts 
such as equation (18). In fact, if all the contact 
areas and heat sources are similar, this equation 
merely becomes 

This procedure contains an implicit assumption : 
that the bulk temperature i.e. the temperature 
produced by the equivalent continuously distri- 
buted source-term (1) above + T,, is constant 
over the nominal contact area. In practice, 
this assumption is not justified and we should 
take account of the variation of bulk tempera- 
ture. However, the additional complexity 
introduced by this variation is not usually 
justified by the accuracy of our knowledge 
of the boundary conditions of the problem and 
it is therefore more reasonable to approximate 
the bulk temperature to its average value over 
nominal contact area This is a ‘large-scale’ 
version of Jaeger’s approximation referred to 
in the discussion of semi-infinite solid solutions 
(Section 4). 

6. DISCUSSION 

6.1 The bulk temperature difference or tempera- 
ture jump 

The irregularity in the temperature field 
produced by a heat input at an actual contact 
area is only significant in its immediate vicinity 

and a typical contact area is believed to be 
about 10m5 m dia. (see for example Rabinowicz 
[ 191). Thus, the limitations on size and position- 
ing of embedded thermocouples ensure that 
they will not respond to the temperatures at the 
actual contact areas, but will record the bulk 
temperature. 

The temperature at an actual contact area 
must be the same in both solids (to maintain 
continuity), but it is not necessary for the bulk 
temperature of the two solids to be equal, or, 
for that matter, for TI to equal Tz. Thus, in 
general, if a thermocouple is embedded beneath 
the surface of each solid, there will be a difference 
between their temperature readings. 

This temperature difference was observed by 
Ling and Sin&ins [13]. In more recent papers, 
Ling proposed an explanation based on sub- 
surface heat generation. He said that ‘Whenever 
the capacity of one of the bodies to remove heat 
away from the interfacial zone is less than the 
amount of heat generated on that surface, there 
will be a temperature jump across the interface’ 
(Ling and Pu [ll], Ling [lo]). 

However, the existence of a temperature jump 
is not conclusive evidence in favour of sub- 
surface heat generation. The bulk temperatures 
will be equal, i.e. there will be no temperature 
jump, only when the temperature field near to 
an actual contact area is similar to that in the 
corresponding semi-infinite solids with equal 
temperatures at infinity. Thus, a temperature 
jump is produced whenever the ratio of the large 
scale thermal conductances away ffom the inter- 
face difhers from the ratio of heat inputs which 
would be produced in the same solids if these large 
scale conductances were infinite. 

Suppose that one of the solids is completely 
insulated from the surroundings so that no 
heat can flow from it except through the inter- 
face. Let there be one area of actual contact and 
let all the heat be generated in the other, non- 
insulated solid. In the steady state, no heat will 
flow through the actual contact area and Ling’s 
criterion predicts that there cannot be a tem- 
perature jump between the solids. However, since 
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there is no heat flow at all in the insulated solid, 
its temperature will be uniform and equal to 

that at the contact area. There will therefore be 
a temperature jump between the solids unless 
the bulk of the non-insulated solid is also at the 
contact area temperature. This condition can 
only be satisfied if the heat source is not only 
below the surface, but sufficiently distant from 
the actual contact area for the temperature at 
the latter to be equal to the average temperature 
over the nominal contact area. This problem is 
also discussed by Johnson [20]. 

6.2 The effect of material properties on the 
boundary conditions 

In order to apply the foregoing solutions to a 
practical sliding contact problem, we need to 
make some assumptions or observations about 
the microscopic boundary conditions at the 
interface. Thus, we need to know the number, 
size and duration of the actual contact areas, 
their velocities relative to the two surfaces and 
the location and strength of the associated heat 
sources. These factors are all determined by the 
nature of the mechanical interactions between 
the asperities of the surfaces. 

It must be emphasised that, whereas the 
motion of the nominal contact area relative to 
the solids is determined by the geometry of the 
system, the motion of the actual contact areas 
is determined only by the nature of the de- 
formation process*. Thus, if solid 1 is much 
harder than solid 2, its asperities will plough 
through solid 2 causing the actual contact 
areas to be stationary relative to solid 1 and to 
move relative to solid 2. The quantity 8 decreases 
as the speed of the contact area over the surface 
increases so that in this case e1 > &. Thus from 
equations (6) and (7), Qz > QI. 

Furthermore, most of the plastic deformation 
(and hence the heat generation) will take place 
in the ploughed solid (2) and this fact also tends 
to increase the ratio Q2/Q1. 

* The dumion of a particular actual contact area is 
however influenced by the large scale geometry (see 4.2). 

Thus, in an otherwise symmetrical sliding 
system, the greater part of the heat generated 
by friction should flow into the softer solid. 
If the system is finite and there is an equal resist- 
ance to heat flow from each solid, this will 
cause the softer solid to have the higher bulk 
temperature. The effect will become more 
noticeable at high sliding speeds, since 8 de- 
creases continuously with increasing speed. 

Most metals become softer with increasing 
temperature so that this asymmetry in heat 
flow should exaggerate the difference in hardness 
between the two solids. This could conceivably 
lead to an instability in the sliding of similar 
solids. Thus, if either solid is initially hotter 
than the other, the consequent difference in 
hardness between them will cause an asymmetry 
in heat flow which tends to perpetuate the 
condition. No experimental evidence of such a 
process has been reported and it is only likely 
to occur if the rate of heat generation is sufficient 
to raise the bulk temperature of the solids into 
the range where thermal softening is significant. 
However, Manton et al. [21] have observed 
a comparable asymmetry in the heat flow from 
a lubricated rolling/sliding contact which they 
attribute to the effect of temperature on viscosity. 
This causes the location of maximum shear 
strain rate to be displaced from the centre of the 
lubricant film towards the hotter surface and 
hence increases the proportion of heat flow into 
the latter. 

The mechanism of asperity interaction in the 
sliding of similar metals is difficult to predict. 
Initially, the asperities will probably adhere 
and distort symmetrically, but during sliding 
they will become work hardened and some 
ploughing will probably occur in both solids. 
However, the symmetry of the system requires 
that the heat generated should be divided 
equally between the solids if their bulk tem- 
peratures are equal. 

7. CONCLUSION!: 

Previous solutions to practical sliding contact 
heat flow problems have generally been based 
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on the assumption that the system can be 
approximated to two semi-infinite solids with 
zero temperatures at infinity. The introduction 
of large ecale thermal resistances into the system 
generally produces a temperature difference 
between the boundaries of the two solids and a 
more reasonable approximation is that of two 
semi-infinite solids of which the temperatures 
at infinity are @ated to the heat flow through 
them. This modification has a relatively small 
effect on the temperature at the actual contact 
areas unless the restrictions to heat flow are 
large, but the division of heat between the solids 
is disturbed. 

An approximate solution to a practical 
problem can be obtained from the following 
simultaneous equations 

1. Two equations relating the temperature of 
the distant boundaries of each solid (T,, 7”) to 
the heat losses from them (Qi, QJ. 

2. An equation relating the temperatures 
T,, T, (now considered as the temperatures at 
infinity in two semi-infinite solids) to the distri- 
bution between the solids of a known total 
heat source (QT). 

The form of this ‘semi-infinite’ equation (2) 
depends on the boundary conditions at the 
interface. A number of existing solutions have 
been generalised to allow for a difference 
between the temperatures at infinity in the two 

solids and a new particular solution, for the 
case of subsurface heat generation, is derived 
in the Appendix. 

When there are several areas of actual contact, 
it has been shown that the interaction between 
their temperature fields is equivalent to the 
additional constriction resistance of the nominal 
contact area In this case, the average tempera- 
tures over the nominal contact area (referred to 
here as the bulk temperatures) have to be 
equated to the temperatures at infinity in the 
semi-infinite solid solution and a correction has 
to be made to the latter to take account of the 
fact that the heat flow through the actual 
contact areas is only spreading out into a finite 
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conductor. This correction is discussed by 
Hunter and Williams [18] and is described by 
them as the ‘constriction alleviation factor’. 

The division of heat between the solids is very 
sensitive to the motion of the actual contact 
areas relative to the solids. This motion depends 
upon the physical properties of the surfaces and 
it is deduced that, at high speeds, most of the 
heat will flow into the softer solid 
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In particular, the temperature at a point on the surface 
(x, y, - zO) is 

T-= .~ 4~ _>.._.___~_._~ -0 ~-..‘-~’ CX,, f -v [,,(X’ + 4” -,- 2”) -- X]/2K’ 

APPENDIX 27ncpc J(x’ + yz + z;;, 

The temperature produced in an infinite solid by a point (A.3! 
source moving through it at a speed V is obtained by Equation (A.3) may be integrated to give the avcragc 
integrating equation (5) and is temperature over a circular area on the surface 

L1 Zn 

T(ave) = qt3, = - 4 ~~ 
Jj 

r cxP (- V{,/[(X + r cos @)’ + (y + r sin 0)’ + zi] - (x + r cos O)ji2~) dli dr 

2&cpea’ J[(x + r cos 0)’ + (y + r sin 6)Z + zg] 
(A.4) 

0 0 

7-Z & w C - W - WKJ iA.1) 

where q is the rate of heat input and x is the projection of the 
length r onto the direction of motion of the heat source. 

To extend this result to the semi-infinite solid, we intro- 
duce an identical source moving parallel to the first at a 
distance of 22,, measured perpendicular to the direction of 
motion. The infinite solid is now symmetrical about the 
plane which perpendicularly bisects the line joining the two 
sources. The temperature field must also be symmetrical, 
thus no heat can flow across this plane and we have the 
solution for the temperature in a semi-infinite solid due to a 
point source moving parallel to the surface at a depth zc, 

where a is the radius of the area and s, y* -z,, are the co- 
ordinates of its centre. 

This integral is not analytic, but some approximate 
numerical values have been obtained for the particular case 
of y = 0 (i.e. for moving point sources passing perpcndicu- 
larly below the centre of the circle) and these are presented 
in figure one for various values of the non-dimensional 
speed (v’ = Va/2u). The co-ordinates x and z arc given as 
multiples of the radius a and z is measured from the surface 
to the source. Temperatures are plotted in the form @A@ 
where 0 is the average temperature due to an equal source 
distributed uniformly over the circle. 

The solution for a distributed source could be obtained 
by a suitable integration of equation (A.4). 

CONDUCTION DE LA CHALEUR A PARTIR DE SOLIDES EN GLISSEMENT 

R&nnC-Les limitations d’echelle importantes du flux de chaleur ii partir de deux solides en glissement 
peuvent avoir un grand effet sur le champ de temperature prb de l’interface. On montre qu’un systkme 
pratique peut &tre reprksentk d’une fawn approchke par deux solides semi-infinis dont les temperatures k 
l’intini sont relikes aux flux de chaleur B travers eux. Un grand nombre de solutions existantes pour des 
solides semi-infinis ont tte generalides pour tenir compte dune difference entre les temperatures a l’infini 
et une nouvelle solution particuliere est blabor& dans le cas d’une production de chaleur sous la surface. 
La methode est alors &endue aux situations avec plusieurs surfaces de contact et l’effet des proprietts 

gbometriques et physiques sur les conditions aux limites interfaciales est discute. 
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DIE WARMELEITUNG IN BEWEGTEN KC)RPERN 

Zusammenfassung-Die zahlreichen WiderstSinde fiir den WSirmestrom zwischen zwei gleitenden Kijrpern 
kannen einen erheblichen Einfluss auf das Temperaturfeld nahe der Zwischenschicht haben. Es wird 
gezeigt, dass ein praktisches System durch zwei halbunendliche K&per approximiert werden kann, deren 
Temperaturen im Unendlichen dabei in Beziehung mit der GrBsse des sie durchdringenden Wlrmestroms 
stehen. Eine Anzahl bekannter Liisungen fiir Halbunendliche Kijrper wurde verallgemeinert urn einen 
Unterschied der Temperaturen im Unendlichen zu beriicksichtigen und ausserdem wird eine neue 
partikullre Liisung fiir den Fall der WPrmeerzeugung unterhalb der Oberfllche entwickelt. Die Methode 
wird erweitert auf Anordnungen mit mehreren Kontaktfllchen und der Einfluss von geometrischen und 

physikalischen Grcssen auf die Grenzbedingungen der Zwischenschicht wird untersucht. 

IIEPEAAqA TEIIJIA TEHJIOHPOBO~HOCTbIO OT CKOJIb3HIIJklX 
TBEPAbIX TEJI 

AHHoTaqmJr-ylccxeAoeanacb nepenaqa Tenma TennonpoBo~HocTbr0 npa cKonbmeHnm 
Tsepmx Tea 6onbmoro pa3Mepa. IIoHa3aH0, 9To npaKTaqecHym cacTeMy MOXFHO annpoKcM- 
MMpOBaTb AByMH nony6ecKoHesHbrM~ TBep@IMEI TeJlaMB, TeMIlepaTypa KOTOpEJX B GeCKOHe- 

YHOCTH OTHOCMTCR K TennoBoMy IIOTOKy, npOXO~HLIJeMy sepe3 3TH TeJIa. 0606qeH PHJI 

EiMeIOEI(IJXCH peIUeHIlt &TIi7 IlOJIy6eCKOHeYHbIX TBepRbIX TeJI C qeJIbI0 y'Ii+Ta pa3HOCTM 

TeMnepaTyp B 6eCKOHeYHOCTLI II pa3pa60TaHO HOBOe qaCTHOe peIIIeHIle @Wi CJly=iaR reHepapO- 

BaHHH TelUIa IIOn IIOBepXHOCTblO. SaTeM MeTOn B~IJI IIpllMeHeH K CJlysaHM C HeCKOJlbKHMl4 

HOHTaKTHbIMPI IIJIO~a~HMH Ei paCCMOTpeH0 BJIIlFIHHe reOMeTpWIeCKHX H &3WIeCKIIX CBOikTB 

HaFpaHHqHble yCJIOBHR Ha SIOBepXHOCTH pa3ReJIa. 


